
Serverless Performance
on a Budget
Erwin van Eyk

The central trade-off

in serverless computing

High Performance

“Infinite” scaling

High availability

Low latency

�2

The central trade-off

in serverless computing

High Performance

“Infinite” scaling

High availability

Low latency

Low Cost

No costs when idle

No operational cost

Granular billing

�2

The central trade-off

in serverless computing

High Performance

“Infinite” scaling

High availability

Low latency

Low Cost

No costs when idle

No operational cost

Granular billing

How can we optimize the performance-cost trade-off? �2

Anatomy of a Functions-as-a-Service (FaaS) platform

pods and other resources

- Function Configuration

- Environment variables

- Arguments

- Version

- Source pointer

- ...

�3

Anatomy of a FaaS platform

�4

Anatomy of a FaaS platform: Fission (without optimizations)

�5

Anatomy of a FaaS platform: cold start

�6

Anatomy of a FaaS platform: cold start

0

�6

Anatomy of a FaaS platform: cold start

1

Trigger function
deployment

0

�6

Anatomy of a FaaS platform: cold start

1

Trigger function
deployment

0

Fetch function metadata
2

�6

Anatomy of a FaaS platform: cold start

1

Trigger function
deployment

3

kubectl create

0

Fetch function metadata
2

�6

Anatomy of a FaaS platform: cold start

1

Trigger function
deployment

3

kubectl create

4

Wait for K8S to
deploy function

0

Fetch function metadata
2

�6

Anatomy of a FaaS platform: cold start

1

Trigger function
deployment

3

kubectl create

4

Wait for K8S to
deploy function

5
Send request

0

Fetch function metadata
2

�6

Anatomy of a FaaS platform: cold start

1

Trigger function
deployment

3

kubectl create

4

Wait for K8S to
deploy function

5
Send request

0 Response6

Fetch function metadata
2

�6

Anatomy of a FaaS platform: cold start

1

Trigger function
deployment

3

kubectl create

4

Wait for K8S to
deploy function

5
Send request

0 Response6

7

Fetch function metadata
2

�6

Anatomy of a FaaS platform: warm execution

�7

Anatomy of a FaaS platform: warm execution

�7

0

Anatomy of a FaaS platform: warm execution

�7

0

5
Send request

Anatomy of a FaaS platform: warm execution

�7

0

5
Send request

Response6

Anatomy of a FaaS platform: warm execution

�7

0

5
Send request

Response6

7

�8

Cold Start

Warm Execution

�8

Cold Start

Trigger
deployer

Warm Execution

�8

Cold Start

Trigger
deployer

Warm Execution

Fetch function
metadata

�8

Cold Start

Trigger
deployer

Warm Execution

Fetch function
metadata

Deploy Pod

�8

Cold Start

Trigger
deployer

Warm Execution

Fetch function
metadata

Fetch
function

Deploy Pod

�8

Cold Start

Trigger
deployer

Warm Execution

Fetch function
metadata

Fetch
function

Deploy Pod Deploy function

�8

Route
request

Cold Start

Trigger
deployer

Warm Execution

Fetch function
metadata

Fetch
function

Deploy Pod Deploy function

�8

Route
request

Cold Start

Trigger
deployer

Warm Execution

Fetch function
metadata

Fetch
function

Deploy Pod Deploy function
Function

Execution

�8

Route
request

Cold Start

Trigger
deployer

Warm Execution

Fetch function
metadata

Fetch
function

Deploy Pod Deploy function
Function

Execution

Route
request

�8

Route
request

Cold Start

Trigger
deployer

Warm Execution

Fetch function
metadata

Fetch
function

Deploy Pod Deploy function
Function

Execution

Route
request

Function
Execution

Cold starts matter!

Wang, Liang, et al. "Peeking Behind the Curtains of Serverless Platforms." 2018 USENIX ATC, 2018.

Coldstart latency (in ms) over 168 hours

�9

500 ms

3600 ms

180 ms

How do FaaS platforms improve their performance?

1. Function resource reusing

2. Function runtime pooling

3. Function prefetching

4. Function prewarming

And, at what cost?

�10

Trigger
deployer

Fetch function
metadata

Deploy pod Deploy function
Function

Execution
Route

request

�11

Function Resource Reusing
Optimization 1

Fetch
function

Function Isolation vs. Function Reuse

�12

Full Isolation Full resource reuse

Function Instance
Request Response

Function Instance
Request Response

Function Instance
Request Response

Function Instance

Requests Responses

Function resource reusing in practice

- Why performance isolation:
- Performance variability

- In practice: all FaaS platforms reuse resources
- Per-user binpacking

- Functions are isolated

- Function executions share resources

�13

FaaS platform with function reusing

�14

Trade-off: how long to keep functions alive?

- To reuse functions we have to keep them alive.

- Keep-alive in practice:
- AWS: ~6 hours

- Google: ~6 hours

- Azure: 1-4 days

short keep-alives

Less idle resources

Long keep-alive

More warm executions

�15

�16

Function Runtime Pooling
Optimization 2

Route
request

Trigger
deployer

Fetch function
metadata

Fetch
function

Function
Execution

Deploy functionDeploy pod

Resources

Function Runtime

Resources

Function Instance = Runtime + Function

�17

- Insight: function instances consist out of two parts
- Function-specific code: user-provided business logic.

- Runtime: operational logic, monitoring, health checks...

- Divide the deployment process into 2 stages:
- Deploy the runtime → unspecialized runtime or stem cell

- Deploy the function to the runtime → specialized function

Function Instance

Function Runtime

Resources

Runtime deployment Function deployment

Resource Pooling

- Common in many domains (e.g. thread pools)

Pool of 3 function runtimes

Fn Runtime

Fn Runtime

Fn Runtime

2 function runtimes → function instances Pool rebalancing

Fn Instance

Fn Instance

Fn Runtime

Fn Runtime

Fn Runtime

Fn Runtime

Fn Instance

Fn Instance

�18

FaaS platform with function runtime pooling

�19

Trade-off: how big should the pool?

Performance Minimize cost

Large pool

Handle high concurrency

Increases resource overhead

Minimal pool

Fast pool exhaustion

Minimize pool; less idle resources

�20

Route
request

Trigger
deployer

Fetch function
metadata

Deploy pod Deploy function
Function

Execution
Fetch

function

�21

Function Prefetching
Optimization 3

Function prefetching

�22

Fetch function sources proactively and place them near resources to

reduce function transfer latency

- Software flow has a big impact on cold start durations
- Function sources (10s of MBs) have to be retrieved and transferred to the resources

- Especially important for geo-distributed and edge use cases
- AWS Lambda@edge

- Cloudflare

Abad, Cristina L. et al. "Package-Aware Scheduling of FaaS Functions." Companion of the 2018 ACM/SPEC International
Conference on Performance Engineering. ACM, 2018.

Prefetching

Rack/Machine-level

Function-level

Remote Storage

Cluster-level

Prefetching

Rack/Machine-level

Function-level

Remote Storage

Cluster-level

Higher latency
Less storage costs

 Lower latency
 More storage costs

FaaS platform with prefetching

�25

Route
request

Trigger
deployer

Fetch function
metadata

Fetch
function

Deploy pod Deploy function
Function

Execution

�26

Function Prewarming
Optimization 4

Function prewarming

Anticipate function executions by deploying functions predictively.

- Prewarming or predictive scheduling in other domains:

- CPU branch predictor

- Proactive autoscalers

- Predictive caches

�27
van Eyk, Erwin, et al. "A SPEC RG CLOUD Group's Vision on the Performance Challenges of FaaS Cloud Architectures."
Companion of the 2018 ACM/SPEC International Conference on Performance Engineering. ACM, 2018.

�28

�28

Predicting function executions is hard...

Active field of research (autoscaling, predictive caches…)

Common approaches

1. Runtime analysis
- Rule-based

- Pattern recognition and machine learning

- Artificial intelligence

2. Exploit additional information of functions
- Dependency knowledge in function compositions

- Interval triggers

�29

... and involves a trade-off.

Optimistic prewarming

Low threshold

Misprediction: resources wasted

Ping hack

Pessimistic prewarming

High threshold

Misprediction: no prewarm

More performance due to prewarming Less costs due to less mispredicted prewarming

�30

- Connect existing functions into complex function compositions

- Workflow engine takes care of the plumbing and provides fully

monitorable, fault-tolerant function compositions with low overhead.

image-recognizer translate-text

image-resizer

⼽戈弗

combine-image-text

Sequential execution

Parallel execution

validate-image

�31

Function composition...

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

Fission Workflows supports horizon-based prewarming

Not started

Prewarmed

Finished

Started

�32

...with prewarming

FaaS platform with workflow-based prewarming

�33

Conclusion

Four techniques key to performance in serverless:

1. Function resource reusing

2. Function runtime pooling

3. Function prefetching

4. Function prewarming

Each makes a trade-off between performance and cost.

Serverless: Pay not just for what you use - pay for what you need.

�34

 http://fission.io + https://github.com/fission

 http://fission.io/workflows

Slack http://slack.fission.io/

Twitter @fissionio

Thanks!

�35

Erwin van Eyk
Software Engineer, Platform9

Chair, SPEC CLOUD RG Serverless

@erwinvaneyk
erwin@platform9.com

http://fission.io
https://github.com/fission
http://fission.io/workflows
http://slack.fission.io/

Additional Slides

�36

What is next?

- Function and execution scheduling

- Workload-based predictions

- Comprehensive Benchmarks

- Performance Overhead Reductions

- Explicit Performance vs. Cost trade-offs

van Eyk, Erwin, et al. "A SPEC RG CLOUD Group's Vision on the Performance Challenges of FaaS Cloud Architectures."
Companion of the 2018 ACM/SPEC International Conference on Performance Engineering. ACM, 2018.

�37

FaaS platform with optimizations

�38

Anatomy of a FaaS

platform

Build time

Developer creates, manages the

functions

Run time

User and external systems events

trigger function executions.

van Eyk, E., Iosup, A., Seif, S., & Thömmes, M. (2017, December). The SPEC
cloud group's research vision on FaaS and serverless architectures. In Proceedings
of the 2nd International Workshop on Serverless Computing (pp. 1-4). ACM.

�39

Fission Workflows supports initial horizon-based prewarming

Not started Prewarmed FinishedStarted �40

Function composition… (pdf version)

Fission Workflows supports initial horizon-based prewarming

Not started Prewarmed FinishedStarted �40

Function composition… (pdf version)

Fission Workflows supports initial horizon-based prewarming

Not started Prewarmed FinishedStarted �40

Function composition… (pdf version)

