
Studying the feasibility of
serverless actors

Álvaro Ruiz Ollobarren
Graduate Reuearcher at Univeruity Rovira I Virgili
alvaro.ruiz@urv.cat

2

Motivation

● Actors are a very popular way of simplifying complex
applications.

● Based on stateful single threaded entities

● Popular frameworks:

Used in production in[1]: Used in production in[2]:

[1] https://www.lightbend.com/case-studies#filter:akka

[2] http://dotnet.github.io/orleans/Community/Who-Is-Using-Orleans.html

3

Background

● Not all applications have a straightforward migration
to the serverless environment

● Actor model could benefit from 2 main aspects:

● Billing

● Scalability

● Simplest use case: Counter

4

Challenges

● Addressing:

● Actors need to receive and send messages to other actors.

● Currently FaaS only support invocation requests.

 usage of external communication services is required.

5

Challenges

● Atomicity:

● To maintain a consistent state, there cannot be more than one
instance of the same actor executing at the same time.

● Serverless functions scale automatically by spawning
concurrent containers

 We need to limit function concurrency

6

Challenges

● State:

● Actors are stateful

● FaaS are stateless: consequent calls to the same function may
not maintain previous state

 External storage services must be used

7

Challenges

● Passivation:

● What to do when no messages arrive?

● Fully event-driven approach: each actor invocation would
imply a cloud function request to an external storage

● Keeping the actor running approach: extremely expensive

8

Challenges

● Performance:

● The actor model must be functional, a minimum performance
is mandatory.

● This is a special requirement given the high network latencies
of the remote components

9

Implementation

Architecture overview

● Addressing: SQS

● State: DynamoDB

● Atomicity: configuration

10

Implementation

● Passivation:

● We propose a hybrid solution:

● Actors process all available messages in a single execution until they
don’t receive a message for a while.

● Then, actors load the state into the DynamoDB and finish the execution.

11

Implementation

● Passivation:

● This approach requires an event system with two main
properties:

1) To trigger a new execution when the actor’s underlying function has
been passivated.

2) When the function is running, notify it without enqueueing more
functions invocations.

12

Implementation

● Passivation:

● This behavior requires an external client to:

● Schedule the execution of actors. This client is notified when an actor
passivates.

● Listen to the passivated actor queue to invoke the actor with the first
message received.

13

Related work

Azure Durable Functions

● Are created, queried or terminated through HTTP-
triggered functions.

● Can orchestrate other functions.

● They also offer:

● Eternal orchestration functions

● Singleton functions

● Async events

14

Related work

Azure Durable Functions

● Are created, queried or terminated through HTTP-
triggered functions. Require 2 invocations.

● Can orchestrate other functions.

● They also offer:

● Eternal orchestration functions.

● Singleton functions. Not atomic

● Async events. Lose events

15

Evaluation

Serverless actors vs AWS Lambda
● Serverless actors:

● Each actor’s message will be sent through SQS.
● Then the message will be read by an already running actor, or

a new actor invocation will handle the new message.
● Modify a counter variable in the actor local memory.

● FaaS:
● Each message implies a new function invocation
● Make a request to DynamoDB.

16

Evaluation

Serverless actors vs AWS Lambda

● Single concurrent lambda
● 3 GB of memory
● Warm containers
● Same invocation process

17

Evaluation

Serverless actors vs AWS Lambda

● Up to 5.95 X faster

● Smaller deviation

18

Discussion

● Addressing

● SQS limitations

 Built-in support for lambda intercommunication

● Passivation

● Events limitations

 Run time support for functions capable of awakening
 when messages arrive to a queue, but able to read all
 available messages from that queue

19

Conclusion

● Serverless actors are possible!

● Our prototype processes up to 5.95× more messages
than its FaaS counterpart

● However, we also argue that run-time extensions to
the serverless core would be necessary:

● Support for intercommunication

● Event system capable of processing messages efficiently and
triggering new functions when necessary

Code and tests available at: https://github.com/danielBCN/faasactors

https://github.com/danielBCN/faasactors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

